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Abstract—From the co-array perspective, sparse spatial sam-
pling can significantly increase the degrees-of-freedom (DOFs),
enabling us to perform underdetermined direction-of-arrival
(DOA) estimation. By leveraging the increased DOFs from the
sparse spatial sampling, we develop a new underdetermined DOA
estimation method for wideband signals, named wideband sparse
spectrum fitting (W-SpSF) estimator. In W-SpSF, we formulate
a sparse reconstruction problem that includes a quadratic
weighted covariance fitting term added to a sparsity-promoting

regularizer. Meanwhile, the optimal regularization pa-
rameter of W-SpSF is studied to ensure robust sparse recovery.
Numerical results enabled nested arrays demonstrate that the
W-SpSF estimator outperforms the spatial smoothing based
MUSIC algorithm and works well in nonuniform noise environ-
ment.

Index Terms—Co-array, direction-of-arrival (DOA) estimation,
sparse spectrum fitting (SpSF), wideband signal.

I. INTRODUCTION

T HE topic of target localization with less sensors than
sources, i.e., underdetermined direction-of-arrival (DOA)

estimation, has been receiving considerable interest in recent
years [1]–[9]. An effective approach for this problem is to
construct a new virtual array with a higher degrees-of-freedom
(DOFs) than that obtained from the physical array. From the
co-array perspective, sparse spatial sampling can provide a
significant improvement in DOFs, and typical schemes of
which include nested arrays [2] and co-prime arrays [3], [4].
Indeed, since the nested/co-prime arrays share a basic co-array
configuration of virtual uniform linear array (ULA), their com-
binations with the standard MUSIC [10] have been extended
to various scenarios, e.g., th-order cumulant statistics [5],
two-dimensional arrays [6], [7], vector-sensor arrays [8] and
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wideband (WB) signals [9]. Most of them, however, resort to
the spatial smoothing technique for establishing a rank-aware
covariance matrix, thereby resulting in some aperture loss.
More recently, by vectorizing the covariance matrix, a se-

ries of sparse signal recovery (SSR) based approaches [11]–[18]
have also been devised for DOA estimation, which have their
roots in the sparse spectrum/covariance fitting criterion. These
methods, explicitly or implicitly, become aware of the increased
DOFs from co-array. For instance, to tackle the underdetermined
case, the SSR based technique is tailored in [14] for nested ar-
rays and in [15]–[18] for co-prime arrays, respectively. How-
ever, these techniques (albeit without aperture loss) concern only
the narrowband signals and the literature for WB signals is less
abundant. Although WB DOA estimation using SSR is not new
(see, e.g., [19]–[21]), previous works seldom address the under-
determined case from the difference co-array perspective.
In this letter, inspired by the increased DOFs from the

difference co-array in sparse spatial sampling, we reformu-
late the underdetermined DOA estimation problem for WB
signals in the SSR framework. We first devise a unified
Gaussian-noise-aware sparse model by prewhitening the per-
turbed errors resulting from finite samples (snapshots). Then an
approach calledWideband Sparse Spectrum Fitting (W-SpSF)
is developed using -norm sparse regularization plus a
weighted covariance fitting (least squares) criterion. In the
W-SpSF estimator, the choice of the regularization parameter is
also discussed to ensure robust sparse recovery. The W-SpSF
approach has many merits such as without a priori knowledge
on the source number, suppressing the spatial aliasing and being
applicable to nonuniform noise. Simulation results corroborate
the effectiveness of the W-SpSF.

II. SIGNAL MODEL AND PROBLEM STATEMENT

Consider a linear array of sensors whose locations are
given by the set , .
And suppose (possibly )WB signals impinging on this
array from the far-field directions where
is the transpose. Each sensor signal after time-sampling is parti-
tioned into segments, and a -point discrete Fourier transform
(DFT) is applied to each segment. The WB array output can be
modeled as [22], [23]:

(1)

where , and are the DFT
coefficients of the received data, source signals and additive
noise, respectively,
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is the steering matrix at the frequency bin with the
steering vector

(2)

where , and is the propagation speed.
The signals and noises, within different frequency bins, are

assumed to be complex circular Gaussian distributed and inde-
pendent of each other [9]. Then the th narrowband output co-
variance matrix is

(3)

where and represent the expectation operator and
conjugate transpose, respectively,

is the th signal covariance matrix with
being the source power vector, and

is the th noise co-
variance matrix with being the noise
power vector. Vectorizing (3), we get

(4)

where , is the th vector
in the canonical basis of ,

where ,
and represent the complex conjugate, Khatri-Rao product and
Kronecker product, respectively. The increased DOFs directly
rely on the distinct rows of , which is equivalent to the
cardinality of the location set, , of
the difference co-array [2]. The problem at hand is to determine
without the need of the knowledge on the source number

and noise variances .

III. WIDEBAND DOA ESTIMATION USING ROBUST
SPARSE COVARIANCE FITTING

A. Noise Reduction and Prewhitening

Note that the noise-like component in (4) consists of the
unknown terms and 0 otherwise. In fact, the indices
of in correspond exactly with the zero locations of
the difference co-array. Furthermore, these zero locations have
occurrences (i.e., redundancy) and inherently lead to only

one DOF instead of DOFs. To mitigate the effect of , we
therefore eliminate the entries of indexed by the positions
of within . This can be achieved by the following
linear operation:

(5)

where ,
with

, being the th vector in the
canonical basis of , and is
the virtual steering matrix.
Having the available segments (frequency snapshots),
is estimated by where

and is the estima-
tion error. Accordingly, we have

(6)

where is the corresponding estimation error
of . Actually, is asymptotically (in ) complex
normal distributed (see, e.g., [21], [24], [25]), viz.,

which further leads to

(7)

where is a zero vector/matrix with proper dimension which,
for simplicity, is determined from the context. Therefore, the
error in (6) can be, at least approximately, viewed as an
additive spatially correlated (colored)Gaussian noise. To further
alleviate this correlation, a prewhitening procedure is considered
here, that is,

(8)

where , and is the
identity matrix.

The new observation (8), reminiscent of the initial model (1),
can be viewed as a long received model with standard Gaussian
noise. In the following, we will adopt (8) to address the problem
of WB DOA estimation because compared to the ideal model
(4), it is not corrupted by the noise variances anymore, thereby
allowing easy access to sparse modeling without introducing ad-
ditional parameters.

B. Wideband Sparse Spectrum Fitting

Following sparse localization framework (see, e.g.,
[12]–[21]), all vectors in (8) can be readily rewritten
as a unified noise-aware sparse model

(9)

Here, , ,
where

denotes the block diagonal operator is the overcomplete basis
in which each column vector is normalized by its -norm,

is the sampling grid set covering all the
potential direction domain, and where

is the th narrowband sparse spatial spectrum. When
such that , share the same

sparse support (i.e., nonzero index) and hence
is a joint row -sparse matrix. That is, the sparsity of (or
) behaves only in the spatial domain instead of the fre-

quency domain. This motivates us to employ the prevalent
-norm minimization formulation for joint sparse recovery

[19], [26]–[28]:

(10)

where is the -norm of ,
( is the th entry of ), de-

notes with an elementwise operation, and is a nonnegative
regularization parameter. The convex formulation (10), also
referred to as theWideband Sparse Spectrum Fitting (W-SpSF)
estimator1, can be solved by interior-point algorithm based
software packages such as SeDuMi [29] and CVX [30], with a
complexity of . Actually, the quadratic term of (10),
i.e., , is
essentially a weighted least squares fitting criterion which can

1Here we use its rudiment from the narrowband SpSF estimator [13].
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induce an asymptotically unbiased estimator [31] and hence is
desirable to debias the solution. The sparse-inducing solution of
(10), however, is highly sensitive to as this parameter balances
the sparsity and the data fidelity (least squares term) and its
poor choice may lead to a non-sparse solution. Therefore, an
appropriate selection of is required to guarantee robust sparse
recovery, which will be investigated in the next subsection.
Remark on Parameter Identifiability: Based on Corollary 1 of

[13], the maximum number of sources, which can be uniquely
identified by W-SpSF, is if any columns of are lin-
early independent (assume here that has been well chosen to
promote sparse solution). With no ambiguity in , we have

where denotes the DOFs of . This
indicates that more degrees mean better identifiability, which
agrees with our intuition. As a result, the proposed W-SpSF es-
timator is able to accommodate the enhanced DOFs from arbi-
trary array geometries (e.g., nested arrays [2], co-prime arrays
[3], [4] and spatial compressive sensing based random arrays
[32]) to improve its parameter identifiability considerably.

C. Regularization Parameter Selection

Here we analyze how to choose a proper via duality theory.
Unlike [26], [27] which determine an appropriate choice of
by revisiting the minimization (10) from its dual maximization,
we address the selection of directly via the Karush-Kuhn-
Tucker (KKT) conditions [33], [34], under an additional non-
negative constraint. We start with the real-valued reformulation
of problem (10):

(11)

where ,
, and represent the

real and imaginary parts, respectively. The associated
Lagrangian is

where and are vectors of Lagrangian multipliers as-
sociated with and , respectively,

, , and
are sub-vector and sub-matrix extracted, respectively, from
and columns of , corresponding to within .
By the KKT conditions [33], [34], we get

(12a)

(12b)

(12c)

(12d)

where denotes the subgradient set of at (see [34] for
a definition), and represent the th element of and
, respectively. The condition (12a) is due to the gradient op-

eration: . In addition, means that

reaches its minimum at , for which the following lemma pro-
vides a necessary and sufficient condition.
Lemma 1: The convex function, , has a minimum value

if and only if .
Proof: Note that consists of a cone (conical surface)
and a hyperplane , both passing through

the origin. Thus, the necessary and sufficient condition for
reaching its minimum is that the hyperplane,

, must be located below the cone, , i.e.,
and hence .

Combing Lemma 1, (12a), (12c) and (12d), the condition
(12b) can be readily simplified as

(13)

Since is equivalent to the random noise
, should be chosen such that the

inequality (13) holds with high probability as nearly a sure
event. The condition (13), however, involves the unknown
parameter (or ), which raises difficulty for choosing a
proper . To circumvent this issue, we introduce the following
theoremwhich characterizes the condition (13) in a probabilistic
sense and hence provides a turning point for the regularization
parameter selection.
Theorem 1: Denote the th column of by , and

define events:

(14)

then , where represents the prob-
ability of event.

Proof: Using the Cauchy–Schwarz inequality
, we

obtain

i.e., and hence , which ultimately leads to
.

From Theorem 1, if , then . There-
fore, we select the parameter such that the events,

, i.e., all inequalities in (14), hold with high probability.
Note that the signals and noises are statistically independent of
each other. We thus have
, and hence which further yields

where de-
notes the normal distribution. Recall that all the column vec-
tors of have been normalized to one. We naturally have

and
, where denotes the chi-square distribution with

DOFs. For simplicity, we simultaneously set all independent
events with high probability, defined by ,
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Fig. 1. Frequency-bearing images in uniform noise case. , ,
, , dB. Left: SS-MUSIC. Right: W-SpSF.

and each event with equal probability . Eventually, the
choice of is

(15)

where denotes the cumulative distribution function of
.

IV. SIMULATION RESULTS

In our simulations, the signals and noises within dif-
ferent frequency bins are assumed to be complex Gaussian
distributed and with power vectors and

, respectively. Accordingly, the WB
stochastic Cramér-Rao bound (CRB) is derived in the
Appendix, which can be applied to the underdetermined
case. The ideal weighted matrix , defined in (7), is re-
placed by . We further assume

and define the signal-to-noise ratio
(SNR) as [35]. Throughout the simu-
lations, we consider a 2-level nested array of 6 sensors with
locations where is the basic ele-
ment-spacing. The probability is set to be 0.999. In addition,

m s and each signal has the common center frequency
of kHz.
Case 1: Aliasing-free Test. In this case, there are

signals with a common bandwidth of kHz from directions
. The uniform

noise case with variance 10 is considered here and the grid
spacing is set as 1 within , 90 . The basic element
spacing, , is set as 8 cm, i.e., the half-wavelength of 2.125 kHz.
As such, the spatial aliasing may occur when kHz
for the SS-MUSIC [9], which, however, can be well sup-
pressed by the W-SpSF approach as long as is less than the
half-wavelength of the lowest frequency [20, Theorem 2]. The
frequency-bearing images are plotted in Fig. 1 at ,

and dB. It is seen that spatial aliasing appears
in the SS-MUSIC (left subplot) when kHz, but no
aliasing is observed in the W-SpSF estimator (right subplot).
Case 2: Estimation Accuracy. In this case, we examine the ac-

curacy ofW-SpSF in terms of rootmean square error (RMSE) by
averaging the results of 500 independent trials. We consider the
nonuniform noise case with ,
and set cm to avoid the spatial aliasing. Assume that

signals with the same bandwidth as in Case 1 impinging
from directions . To im-
prove the estimation precision, we set a finer grid spacing of

Fig. 2. RMSEs in nonuniform noise case. , , . Left:
. Right: dB.

0.1 around the estimated peaks, but the initial grid remains
unchanged as in Case 1. In Fig. 2, we plot the RMSEs versus
the SNR with (left subplot) and versus the number of
snapshots with dB (right subplot), under a common
condition of . It is observed that the proposed W-SpSF
estimator has a lower RMSE which is much closer to the CRB
than that of the SS-MUSIC.

V. CONCLUSION

This letter presents the Wideband Sparse Spectrum Fitting
(W-SpSF) estimator which can efficiently accommodate the
increased DOFs from sparse spatial sampling to perform un-
derdetermined DOA estimation. To guarantee robust sparse
recovery against the parameter sensitivity of W-SpSF, the
best regularization parameter is obtained by the KKT con-
ditions. Theoretical analysis and simulation results illustrate
that W-SpSF exhibits excellent estimation performance and is
superior to the SS-MUSIC. Nevertheless, due to modeling error
(outlier) W-SpSF cannot provide reliable DOA estimation for
correlated signals, which will be addressed as our future work.

APPENDIX
STOCHASTIC CRB FOR WIDEBAND SIGNALS

Stack all the array outputs as a vector
. With the statistic as-

sumptions in Section II, the resultant covariance matrix of is

(16)

Define the parameter vector as , .
Recall that the CRB is the inverse of the Fisher information ma-
trix (FIM). That is, we only need to derive its FIM. Using the
block diagonal structure of , the th entry of the associated
FIM, denoted by , is given by [36]

(17)

where is the trace operator and is the th element of .
Thus, the WB FIM, , is the sum of all the associated narrow-
band FIMs, . Then using the result in [14] on the nar-
rowband FIM, we can easily obtain the relevant WB CRB.
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